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ABSTRACT

The existence of the million-degree corona above the cooler photosphere is an unsolved
problem in astrophysics. Detailed study of quiescent corona that exists regardless of the
phase of the solar cycle may provide fruitful hints towards resolving this conundrum.
However, the properties of heating mechanisms can be obtained only statistically in
these regions due to their unresolved nature. Here, we develop a two-step inversion
scheme based on the machine learning scheme of Upendran & Tripathi (2021a) for
the empirical impulsive heating model of Pauluhn & Solanki (2007), and apply it to
disk integrated flux measurements of the quiet corona as measured by the X-ray solar
monitor (XSM) onboard Chandrayaan–2. We use data in three energy passbands,
viz., 1–1.3 keV, 1.3–2.3 keV, and 1–2.3 keV, and estimate the typical impulsive event
frequencies, timescales, amplitudes, and the distribution of amplitudes. We find that
the impulsive events occur at a frequency of ≈25 events per minute with a typical
lifetime of ≈ 10 minutes. They are characterized by a power law distribution with a
slope α ≤ 2.0. The typical amplitudes of these events lie in an energy range of 1021–
1024 ergs, with a typical radiative loss of about ≈ 103 erg cm−2 s−1 in the energy range
of 1–2.3 keV. These results provide further constraints on the properties of sub-pixel
impulsive events in maintaining the quiet solar corona.

Keywords: Quiet Sun, Quiet solar corona, convolutional neural network, X-ray corona

1. INTRODUCTION

The anomalous heating of the solar corona occurs not just in bright active regions, but also in
the Quiet Sun (QS) regions. Hence, the route to understanding the temperature of the corona
begins by understanding the heating in QS. The two predominant physical mechanisms responsible
for heating the solar corona are through dissipation of Magnetohydrodynamic (MHD) waves via
resonant absorption or phase mixing (see, e.g. Alfvén 1947; Osterbrock 1961; Antolin et al. 2008) or
that of magnetic stresses via magnetic reconnection or Joule Heating (see, e.g. Parker 1972; Chiueh
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& Zweibel 1987; Parker 1988; Hansteen et al. 2010, and also Klimchuk (2006); Parnell & De Moortel
(2012)). However, it has been shown that both of these mechanisms give rise to the heating in an
impulsive manner (Antolin et al. 2008; Klimchuk 2015).

Impulsive events are very well observed in all layers of the solar atmosphere over a range of spatio-
temporal scales (see, for example Benz & Krucker 1998; Benz 2008). Such impulsive events are even
potentially consistent with dynamics of transition region lines like Si IV (Gupta et al. 2018; Tripathi
et al. 2021; Tripathi 2021), and chromospheric lines like the C II (Upendran & Tripathi 2021b)
and Mg II (Upendran & Tripathi 2022). They also typically explain the dynamics and coupling
in the chromosphere and transition region, with potentially explaining the formation of the solar
wind (Hansteen et al. 2010), and structures like switchbacks (see Upendran & Tripathi 2022, for
more details). Thus, an impulsively heated scenario may potentially explain the heating of the QS
corona.

If impulsive events are to explain the temperature of the solar corona, they must follow a power
law distribution in energy of the form: dN

dW
∝ W−α, with α > 2 as conjectured by Hudson (1991).

However, there is a wide range of α reported in literature (see, for e.g. Kuhar et al. 2018; Aschwanden
2019; Alipour et al. 2022), depending on the time, region and energy band of observation (see also,
for e.g. Berghmans et al. 1998; Parnell & Jupp 2000; Hannah et al. 2008; Berghmans et al. 2021).

The QS corona is generally very diffuse. The impulsive events thought to explain the QS are
expected to be of the order of, or smaller than ≈ 700 km, and lie in the sub-pixel regime (Pauluhn &
Solanki 2007). Typically, the individual events responsible for generating the QS corona may remain
unresolved, and would not show a clear signature of resolved events like microflares. Hence, any
statistic or model based on naive counting of occurrence of individual events in a typical QS light
curve, for example, introduces a bias either towards the larger events, or an under-counting of multiple
small events as one large event. These individual events, however, leave a collective imprint on the
entire light curve in a statistical manner. These imprints have been shown to be statistically reflected
in the intensity distribution of light curves from Active Regions (see, for example the analysis by
Vekstein 2009; Terzo et al. 2011; Jess et al. 2014, 2019) and coronal loops seen in X-rays (Sakamoto
et al. 2009). Clearly, while individual events may not be measured, their cumulative effect on the
statistical properties of intensity light curves can be leveraged to understand these events. Thus, the
existence of such small-scale events may only be inferred statistically.

Typically, a ‘statistically-realistic’ simulation would be the one which reproduces some salient prop-
erties of the observations well. A statistical and impulsively heated mechanism may leave signatures
in the distribution of intensity, the characteristic temporal features, or in the thermal structure
of plasma (see, for e.g. Sturrock et al. 1990; Hudson 1991; Sylwester et al. 2019; Rajhans et al.
2021). Hudson (1991), for example, show that the relative interplay of frequency of occurrence of
events and the time scale of the events reflects in the temporal power spectrum of the emergent light
curves. One such empirical model was proposed by Pauluhn & Solanki (2007), hereafter referred to
as the Pauluhn and Solanki Model(PSM). PSM is an empirical model based on two key observations:
the log-normal distribution of intensities in corona when taken spatially or temporally (Pauluhn et al.
2001; Andretta & Del Zanna 2014), and the power law distribution of energies of individual events
(see e.g., Aschwanden 2019). In brief, the PSM constructs light curves through a combination of mul-
tiple impulsive events enforcing a Markovian process to generate these light curves. The amplitudes
of the impulsive events are sampled from a power law, while the distribution of generated intensity is
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theoretically shown to be log-normal by Pauluhn & Solanki (2007). For details of PSM, see Pauluhn
et al. (2001); Pauluhn & Solanki (2007).

The PSM has been applied successfully to light curves from various regions in the solar corona (see,
for example Pauluhn & Solanki 2007; Bazarghan et al. 2008; Tajfirouze & Safari 2012; Upendran &
Tripathi 2021a). In a nutshell, the application of PSM essentially involves inferring the free parameters
of the model for a given light curve (or a set of light curves).

Parameter estimation may be performed using different methods. Hudson (1991) demonstrate the
effect of high- and low frequency heating on the temporal power spectrum qualitatively. However, it is
desirable to actually infer the individual free parameters of the models given the light curves or power
spectra, and not just obtain a qualitative match. For this purpose, we use machine learning, which
is a paradigm for constraining the free parameters of a non-linear model using data (Goodfellow
et al. 2016). Upendran & Tripathi (2021a) developed an exhaustively validated machine learning
inversion model for the PSM. Simply put, the inversion model employs a Convolutional Neural Network
(CNN; LeCun et al. 2015) to infer the parameters of PSM for given observed light curves as input.
Upendran & Tripathi (2021a) successfully demonstrated their inversion model on a large number
of light curves from Atmospheric Imaging Assembly (AIA; Lemen et al. 2012) on board the Solar
Dynamics Observatory (SDO; Pesnell et al. 2012), and infer the distribution of different parameters
for more than 300, 000 QS light curves. This inversion scheme, which we shall henceforth call iPSM 1,
can infer the free parameters of PSM, as evidenced by the excellent match in the intensity histogram
and the Mórlet wavelet power spectrum (Torrence & Compo 1998) between the simulations and
observations.

The AIA data used by Upendran & Tripathi (2021a) were in units of DN/s, and did not have
absolute flux calibration. Hence, while the parameters may be estimated well, it is difficult to
ascertain the energy range over which these events occur. To mitigate this primary drawback, we
consider the full-disk integrated, flux calibrated data from the Solar X-ray Monitor (XSM) onboard
Chandrayaan-2 mission (Vadawale et al. 2014; Shanmugam et al. 2020; Mithun et al. 2021a) of the
Indian Space Research Organization (ISRO). We apply the iPSM on two light curves obtained in
three energy bands during the solar quiet time. Furthermore, we also generate better constraints on
the bounds of PSM power-law input by applying a simple metric-based search on top of iPSM. This
leads us to a better estimation of the energetics of the impulsive events in QS.

The rest of the paper is structured as follows: in §2, we describe the dataset used in this analysis.
In §3 we describe the forward model, uncertainty characterization and the inversion scheme. In §4
we report the results of our inversion and various properties of our results, and finally we discuss the
consequences of our results in §5.

2. OBSERVATIONS AND DATA

For the present work we have used the observations recorded by XSM on-board Chandrayaan-2
mission. XSM observes the Sun as a star and provides measurement of X-ray spectra in the energy
range of 1–15 keV with an energy resolution of ≈175 eV at 5.9 keV and a time cadence of one second.
It has been demonstrated that XSM has the sensitivity to carry out spectral measurements even
when the solar activity is well below A-class (Mithun et al. 2020). Thus, it is possible to use XSM
observations to obtain X-ray flux from the Sun during quiet phases.

1 Inversion code for PSM
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Figure 1. The XSM observed light curves considered in this work. The left(right) column is for 2019(2020)
observations. Top row is the light curve for 1.0–1.3 keV, middle row is for 1.3–2.3 keV and the bottom row
is for 1.0–2.3 keV.

We have selected XSM observations for two time periods (Oct 17–21, 2019 and Feb 14–21, 2020)
when there were no active regions on the solar disk as confirmed from https://solarmonitor.org. In
this work, we are interested in studying the contribution of the unresolved impulsive events to the
quiet coronal light curves and not the well resolved events like microflares. Thus, by visual inspection
of the X-ray light curves, we removed the microflare like events studied by Vadawale et al. 2021a so
that the selected observations form a true representation of quiescent solar corona, similar to Terzo
et al. (2011). This step inevitably gave rise to data gaps. However, since we are interested in a
statistical study of the QS light curves, we have concatenated the light curves by ignoring the gaps
and obtained a continuous time series.

For the selected duration, we generated effective area corrected and time-resolved X-ray spectra
from the raw data using XSM Data Analysis Software (XSMDAS; Mithun et al. 2021b). Given the
very low solar X-ray flux during these observations, the time bin size for spectra was chosen to be 2
minutes so that uncertainties on the flux due to counting statistics is typically less than 5%.

The X-ray flux light curve, F (t), in the energy range E1 to E2 is then computed from the time-
resolved spectra S(E, t) as:

F (t) =

E2∑
E=E1

S(E, t) E

A(E)
(1)

where A(E) is the on-axis effective area of the XSM (Vadawale et al. 2021a). For both the obser-
vations, we generated light curves using eq. 1 for the energy ranges of 1.0–1.3 keV, 1.3–2.3 keV,
and 1.0–2.3 keV. The light curves so obtained are shown in Fig. 1. Spectra above 2.3 keV are not
considered as no appreciable flux is observed above that energy by XSM during QS observations.

https://solarmonitor.org
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PSM simulations: 
Vary pf,𝜏,𝛼 with guess ymax, ymin

Simulation bank iPSM Convolutional 
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Figure 2. Flow chart detailing the various steps in our algorithm. First, the iPSM is trained on simulations.
Next, the trained model is used to infer pf , τ and α. Finally, the ymax and ymin are inferred by minimizing
an error metric.

3. MODELING

We seek to understand the properties of events that give rise to the X-ray light curves shown in
Fig. 1. For this purpose, we employ the PSM, which is based on the impulsive heating scenario.
An impulsive event in the PSM is defined as an exponential rise of intensity to a peak value, and a
subsequent exponential fall-off. This is determined by the total timescale τ , which is the sum of the
exponential rise (τr) and the decay (τd) timescale. These two time scales are related as τr = 0.75τd
following Pauluhn & Solanki (2007). Note that while this relation is not exact, it is observationally
motivated. Zhang & Liu (2015) find a direct relation between rise and decay times, though this
relation was a power law for the large flare cases considered. Also note that the constant 0.75 has
been put in ad-hoc by Pauluhn & Solanki (2007). The peak value, i.e., the amplitude of each event, is
sampled from a power-law distribution. This power law distribution has a slope α, with a lower and
upper energy limit ymin and ymax, respectively. A multitude of impulsive events occurring at different
times gives rise to the simulated light curves. The probability that an event will even occur at a time
step is controlled by the flaring frequency (pf ). Hence, the PSM has 5 free parameters, namely pf , τ ,
α, ymin and ymax, which fully determine a simulated light curve. This reduces our problem to the
estimation of the above mentioned five parameters for XSM light curves shown in Fig. 1.

The iPSM model forms the core inference block of our work. The optimization for all the 5 pa-
rameters is inherently difficult to perform due to degeneracy in the parameter space. Hence, iPSM
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performs inference of only three of the free parameters, while keeping ymin and ymax fixed. Hence, we
breakdown the inversion scheme into two steps (see Fig. 2), i.e., determining pf , τ and α in the first
step and ymax, ymin in the second step by performing a fine search over the exact range of amplitude
of the events.

As shown in Fig. 2, each step further consists of several parts. However, the first step requires we
already have a reasonable estimate of ymax and ymin. Hence, we first put reasonable bounds on range
of values ymax and ymin can take by using prior observations, and fix an initial guess. Using this ymax
and ymin, we generate a bank of the PSM simulations sweeping across a range of pf , τ and α. We
then use this simulation bank to train the iPSM (the “Training iPSM” block in Fig. 2), and learn the
mapping from the simulated light curves to their corresponding parameters. Finally, we perform a
forward pass of the XSM light curves through the trained model, and infer the corresponding values
of pf , τ and α (“Inference time”, pink colored section in Fig. 2).

Using the inferred values of pf , τ and α from step–1, in step–2, we generate another bank of
simulations, this time sweeping on ymax and ymin. Note that the range of ymax and ymin is within the
bounds as described in step–1. Finally, by minimizing an appropriate metric, we perform a parameter
sweep considering the XSM light curves to infer ymax and ymin (“Metric minimize”, sea green section
in Fig. 2). Thus, through a two-step process, we infer all the 5 free parameters of the PSM.

3.1. Fixing ymax and ymin

As described above, for generating the simulation bank for iPSM in step–1, we need to fix ymax
and ymin. Furthermore, we need to define bounds of ymax and ymin over which the step–2 search is
performed. To do so, we first fix the upper bound of ymax and lower bound of ymin approximately,
and then fix the ymax and ymin values within this range for step–1. We first define the integrated
energy per flare as:

E = 4πR2
1AU · τ · Fmedian · Fcode, (2)

where E is luminosity in a given energy band, Fcode is the amplitude of an event in code units, τ is
the associated timescale (in seconds), R1AU the distance from Sun to Earth in meters, and Fmedian the
median intensity of the XSM light curve in Wm−2. Note that we divide the observed light curves by
their median values during training and inference time, so the event amplitudes in code units would
need to be multiplied by the same scaling to get the correct dimensional values. This conversion
factor in Eq. 2 helps us translate from the energy of an event in code units to real units. Since we
want to generate bounds on ymax and ymin, we fix the bounds for Fcode, given other terms in Eq. 2.

Eq. 2 has terms on the right hand side (except Fcode) common for both the upper bound of ymax
and lower bound of ymin. Let us consider the median intensity in the 1–2.3 keV energy band, which is
≈ 5×10−9 Wm−2 (see Fig. 1), 1 AU to be ≈ 1.5×1014 m, and a maximum time scale of ≈ 720 seconds.
We obtain this timescale from the iPSM inversions of light curves in the 211 Å passband of QS, as
obtained by Upendran & Tripathi (2021a). The AIA 211 Å passband corresponds to a temperature
of log T ≈ 6.2, while the X-ray measurements typically lie in the range of log T ≈ 6.2−6.8 (Vadawale
et al. 2021b). Thus, we use the 211 Å results as a proxy for the X-ray measurements here. Hence,
an event with unit amplitude event (i.e Fcode = 1) would correspond to an energy of ≈ 1025 ergs.

First, we generate an upper bound for ymax. We note that in our dataset, all the microflares studied
by Vadawale et al. (2021b) have been removed. Hence, an individual event in any of our simulation
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cannot be larger than the smallest flare observed by Vadawale et al. (2021b). Since we are operating
in particular energy band, we redo the energy distribution computation in Vadawale et al. (2021b)
for the energy band of 1–2.3 keV. The lowest energy thus inferred by Vadawale et al. (2021b) for this
energy band corresponds to 1024 ergs. This corresponds to ‘E’ in Eq. 2. Thus, Fcode should be < 0.1
for the maximum amplitude condition to be satisfied. Thus, we obtain an upper bound on ymax –
i.e, ymax < 10−1.

Having fixed the upper bound for ymax, we turn our attention to fixing the lower bound on the
ymin. For this, we consider the energetics of fluctuations observed in soft-X ray light curves derived
by Katsukawa & Tsuneta 2001; Katsukawa 2003. These authors found the energies of impulsive
events of ≈ 1020−22 ergs to be consistent with the distribution of fluctuations of soft-X ray light
curves in active regions. Labonte & Reardon (2007) however showed that the fluctuations in the
light curves as obtained by Katsukawa & Tsuneta (2001) are consistent with noise. Thus, we take
the lower limit of the possible energies, and set a lower bound on ymin as 1020 ergs, where the lower
limit basically corresponds to “noise” events. This value would correspond to ymin > 10−5 in code
units, following Eq. 2. Thus, the event amplitudes may lie only between 10−5 and 10−1. Hence, these
physical observations set the general bounds of the range of the expected energies of events.

We have now obtained the lower bound on ymin and the upper bound on ymax. To fix the values
of ymax and ymin in step–1, we prototype on a very limited combination of ymax and ymin, generating
one iPSM model for each combination. Through visual inspection, we find ymax and ymin of 5× 10−3

and 10−4 (code units) to give us simulations which show a good match in the intensity distribution
& wavelet power spectrum with the XSM observation. Thus, we fix ymax and ymin to be 5 × 10−3

and 10−4 for generating the bank of simulations for step–1 of our inversion.

3.2. Statistical uncertainty model

Using all the parameters discussed above, we generate simulated light curves that can be com-
pared with the observed light curves from XSM. However, the QS is known to have weak emission
in X-rays (see, for example, Brosius et al. 1997; Katsukawa & Tsuneta 2001; O’Dwyer et al. 2010),
and is expected to have a non-negligible contribution of counting statistics. Therefore, for an ob-
jective comparison, the associated simulated light curves must be incorporated with these statistical
uncertainties.

For this purpose, we estimate the statistical uncertainties on the light curves by propagating the
Poisson error on the observed count for each light curve. Hence, for each observed light curve to be
inverted, we know the signal and the associated uncertainty at each time step.

To get a non-dimensional estimate of the uncertainty as a single number for the full light curve,
we first calculate the uncertainty-to-signal ratio rt at each time step for a given XSM light curve.
This provides us a measure of the “uncertainty fluctuation” as a fraction of the signal. To extract
the essential features of this fluctuation while keeping the workflow simple, we consider the mode of
rt, denoted as r. This is the estimate of uncertainty as a fraction of the observed signal for the full
light curve. This is justified since the variation of the mean count rates during the observations have
remained nearly constant. We obtain r for each observed light curve.

To incorporate this uncertainty into each simulated light curve, we replace the intensity at each
time step with a sample from a Gaussian distribution with a mean of the simulated intensity (from
the PSM), and a standard deviation of r times the intensity at that time step. This is justified as
while the original photon counts follow a Poisson distribution, the flux values after integration over
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two minutes are expected to follow a Gaussian distribution. Since there are 6 light curves, we have
6 associated sets of simulations for each light curve.

Finally, by taking care of all the steps explained above, we simulate the light curves. We generate
simulated light curves for a duration of 2400×120 =288000 seconds at a time cadence of 1 second,
i.e., 1 code time step = 1 second. To minimize the effect of starting seed, we generate the simulations
with extra 1600 seconds, and throw away the first and last 800 seconds. The simulations are then
re-binned at 120 second cadence, giving rise to 2400 time points to match the observations.

We incorporate the statistical uncertainties to each simulated light curve, and normalize each by
it’s median value as a pre-processing step to the iPSM. After parameter inference, we construct the
best-matching simulations by multiplying the median normalized simulations with the median value
of the corresponding observation. This gives us simulation light curves in the units of W m−2. Since
we are scaling the intensities in the simulations, we also scale the corresponding ymax and ymin values,
which determine the amplitude of these events, in the same way.

For step–1, we generate the bank of simulations by varying pf between 3 to 57 events per minute,
which translates to pf between 0.05 to 0.95 events per second in steps of 0.01 events per second. The
time scale τ is varied between 1 second and 500 seconds in steps of 10 seconds, while α is varied
between 1.5 and 3.0 in steps of 0.1. This parameter space is similar to Upendran & Tripathi (2021a).
We have however reduced the maximum value of τ (in seconds), since we expect X-ray observations
to show much shorter time scales than EUV observations, as seen by Upendran & Tripathi (2021a).
With the step–1 simulation bank ready, we are ready to perform step–1 inference of PSM parameters.

3.3. Inversion scheme: The iPSM

The iPSM is a deep-learning model as defined in Upendran & Tripathi (2021a). This is a 1-D CNN
model which takes in the light curves, and maps them to their corresponding free parameter set – pf ,
τ and α. We describe the network architecture briefly below, while the details are exactly as described
in Upendran & Tripathi (2021a). In essence, iPSM contains multiple convolution layers sandwiched
with non-linear transformations called activation functions. This forms the basic “learning ability”
of the iPSM.

During training time, a cost function is minimized to train the trainable parameters (weights)
of the network. The hyper-parameters, which must be fixed by hand, are the same as those used
in Upendran & Tripathi (2021a). However, note that since the simulations in this work need to be
uncertainty-incorporated, we retrain the model from scratch for the new set of simulated light curves.
We generate 6 inversion models in total corresponding to each light curve.

The iPSM also generates epistemic uncertainties associated with every inversion. This is accom-
plished by randomly switching off certain neurons during inference time (Hinton et al. 2012), and
performing a Monte Carlo forward pass. The obtained uncertainty is a reflection of how much weight
- parameter space has not been explored by the iPSM (Gal 2016).

The simulated light curves for each model are split into training set (80%) and testing set (20%).
The model is trained on the training set, while the evaluation on the testing set is used to mark
the convergence of the model. Following Upendran & Tripathi (2021a), we use the coefficient of
determination (R2) as a measure of goodness of fit of the model. Simply put, R2 performs a point-
wise comparison between two arrays. If the two arrays are perfectly correlated, R2 = 1. The worser
the correlation, lower is R2. We compare the actual simulation parameters with those obtained by
inversion from the iPSM. All of our models show R2 > 0.98 for pf and τ , while the R2 for α are more
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than 0.91. This step is depicted graphically as the yellow and pink flow diagrams in Fig. 2. Thus,
we infer pf , τ and α for each XSM light curve from step–1.

3.4. Inversion scheme: Metric minimization

In step–1, we have inferred three parameters pf , τ and α for fixed values of ymin and ymax. In step–
2, we fix these three parameters and generate a new set of light curves by sweeping ymax and ymin.
We sweep ymax between 9× 10−4 and 5× 10−2 with 45 steps in log10, and ymin between 1× 10−5 and
5×10−4 for 36 steps in log10. On these light curves we incorporate the photon counting uncertainties
as described in §3.2. These light curves serve as a bank from which we may perform an inexpensive,
simple search to generate better constraints on ymin and ymax. However, to do so, we need to define a
metric which we may then minimize. Since our qualitative “best fit” is determined by a good match
between the simulation and observation in terms of intensity distribution and power spectrum, we
define a simple metric in Eq. 3 as:

m = max
(
(CDFO − CDFS)2

)
+ max(((PO − PS)/PO)2). (3)

Here the subscripts O and S correspond to observation and simulation respectively. The first term
finds the maximum of absolute difference between the cumulative distribution function of the two
light curves. The second term finds the maximum relative wavelet power mismatch between the two
light curves.

With this metric, we then perform a grid search, and find the combination which gives us the
lowest possible metric value. The corresponding ymax and ymin are then taken up as the ‘inferred’
final values.

4. ANALYSIS AND RESULTS

4.1. Light curve inversions

Applying our two step procedure described in §3, we obtain the “best fit” parameters of the PSM

simulations. In Fig. 3, we present the metric surface from step–2 as a function of the swept range
of ymax and ymin, where the metric value is lower for darker color. Note that we have displayed the
metric in log-scale. The blue circle represents the originally pre-fixed ymax and ymin for step–1, while
the green star is the ymax and ymin solution inferred from step–2 parameter search.

Fig. 3 reveals a number of salient features about our inferred solution(s). First, there is a whole
diagonal of “good” solutions, showcasing the degeneracy between ymax and ymin. Second, the pre-
fixed ymax and ymin lie very close the diagonal ridge of good solutions, thereby also justifying our
choice of initial guess for ymax and ymin. Third, the final good solutions are sometimes quite close to
the pre-fixed values, while sometimes they change by an order of magnitude. The final amplitudes,
however, would depend on the median flux value. Therefore, the constraint is strongly performed
for the ratio of ymax and ymin. On the whole, a very strong global minimum is not clearly seen for
constraining ymax and ymin. However, the solutions as we shall see next give rise to a very good
representations of the observed light curves.

We now present the inversion results for the two light curves obtained by integrating the signal
between 1–2.3 keV energy band in Fig. 4. The results for other light curves are presented in the
Appendix 6.1.

In Fig. 4, we show the light curves (panel a), intensity distributions (panel b), wavelet power
spectrum (panel c) and cumulative distribution function (CDF; panel d). The orange represents the
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Figure 3. The variation of metric with ymax (x-axis) and ymin(y-axis). The two parameters are presented
here in code units (note the log scale), while the metric is presented in scale of log10. The blue circle
shows the originally selected ymax and ymin (as used by the iPSM), while the green star corresponds to be
combination with lowest metric value.

observation and the black represents the PSM forward model of the best fit parameters. Note that
simulated light curve is uncertainty-incorporated. The uncertainty bands in the power spectrum
correspond to 1-σ standard deviation in time. The top four panels are for data recorded in 2019
and the bottom four are for that in 2020. Note again that a statistically accurate simulation must
capture the intensity distribution well. Similarly, such a simulation must also capture the essential
frequencies in the time series which have excess power. These are represented by the histogram
(and CDF) and the wavelet power spectrum. The presence of peaks at similar frequencies in the
power spectrum gives us the scales of importance, though we emphasize that the exact amount of
power need not exactly match. The plots reveal a good correspondence between the observed and
simulated light curve, both in matching the distribution, and wavelet power at different scales. Thus,
the two-step inversion scheme with iPSM successfully in captures the necessary information from the
presented observations.

We summarize the inversion parameters for all the six light curves in Table. 1. We note that the
flaring frequency pf ranges from 24−35 events per minute and the time scale τ ranges from ≈ 6−12
minutes with maximum uncertainty of the order of a minute. For all the light curves, the inversion
gives us power law slopes of ≤ 2.0. Finally, ymax generally ranges from 7×10−11–1.26×10−10 W m−2,
while ymin ranges from 6× 10−13–2× 10−12 W m−2.

4.2. Energetics
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I. 1-2.3 keV from October 2019
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II. 1-2.3 keV from February 2020

Figure 4. Comparison of the observed light curve from XSM (orange), and the PSM forward model of best
fit parameters inferred from our inversion code (black) in 1-2.3 keV energy band from 2019 (sub figure: I)
and 2020 (sub figure: II). Each sub-figure has four panels depicting: Panel (a): Observed and simulated light
curves; Panel (b): Distribution of observed and simulated light curve intensities; Panel (c): Global Morlét
power for observation and simulations, with the uncertainties presented in orange and blue bands; Panel
(d): Comparison of simulation and observation intensity CDF. The inset reports the inferred parameter set
for the respective data.
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Table 1. Summary of the inferred parameters for the six light curves.

Parameter
1.0 – 1.3 keV 1.0 – 2.3 keV 1.3 – 2.3 keV

2019 2020 2019 2020 2019 2020

pf (events min−1) 27.89± 1.67 33.18± 1.87 28.00± 2.16 34.17± 1.97 25.42± 1.57 24.95± 5.15

τ (min) 10.56± 0.88 9.12± 0.73 11.80± 1.05 8.26± 0.67 9.29± 0.79 6.56± 0.56

α 2.00± 0.12 1.74± 0.15 1.87± 0.15 1.58± 0.12 1.94± 0.13 1.56± 0.13

ymax (W m−2) 8.14× 10−11 7.30× 10−11 1.26× 10−10 9.07× 10−11 7.71× 10−11 6.86× 10−11

ymin (W m−2) 2.03× 10−12 8.28× 10−13 2.12× 10−12 1.00× 10−12 1.12× 10−12 6.36× 10−13

We now have a train of events giving rise to each of the observed light curves. Our goal is to study
the energetics of these events. For this purpose, we first convert the obtained intensities into fluxes
and energies following Eq. 2. Since we would be integrating only in a particular energy band, they
would correspond to a “lower bound” of energy. The energy estimates are better representatives
of the energy content of these events if larger energy bands are considered. Hence we consider the
energies in the widest 1–2.3 keV passband. We find that our energies typically range between 1021–
2× 1023 ergs for this passband, with α shallower than 2.0. These events will thus correspond to the
nanoflare or even picoflare energy range.

To understand the average radiative loss flux, we define the average amplitude of flare in a given
time series (A) following Pauluhn & Solanki (2007) as :

A :=

(
1− α
2− α

)
·
(
y2−αmax − y2−αmin

y1−αmax − y1−αmin

)
(4)

The amplitude of the flare as defined in eq. 4 is in code units, which can be converted into real units
of energies following Eq. 2. Inherently, we assume that the corresponding energy obtained is emitted
isotropically by the Sun. To estimate the amount of energy emitted across the whole time series,
we also need the frequency of occurrence of these events (pf ). Hence, for a given flaring frequency
of pf (events per second), the amount of energy radiated per unit time would be pf · E. Thus, the
radiative flux loss from unit solar area (since we are performing full-disk integration) would be

RL :=
pf4πR2

1AU · τ
A�,disk

A (5)

We find the radiative flux losses to be ≈ 5× 103 erg cm−2 s−1 in the 1-2.3 keV energy band, while
they are ≈ 3.5 × 103 and ≈ 2 × 103 erg cm−2 s−1 in the 1–1.3 and 1.3–2.3 keV energy bands, with
errorbars on each term. While the full set of results are presented in the Appendix in Table. 2, the
losses are typically of the order of 103 erg cm−2 s−1.

5. DISCUSSION

In this paper we study the QS heating and its energetics using XSM observations. To this end we
use the empirical impulsive heating scheme of PSM as the ground truth. We have deployed a two
step inversion scheme using the machine learning iPSM coupled to a metric-based parameter search
to infer the PSM parameters of our QS light curves. This inversion scheme let us infer the flaring
frequency (pf ), the time scale (τ), and the power law slope (α), as well as the bounds of the power
law (ymax, ymin) for any given light curve. By incorporating uncertainty model for the observed light
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curves, we perform the inference on full-disk integrated X-ray observations. The obtained results are
summarized in Table 1.

We find that the flaring frequency is ≈ 24 − 35 events per minute. This flaring frequency is 10×
larger than those reported by Upendran & Tripathi (2021a) based on AIA observations, who found
pf ≈ 2.5 events per minute. These two results may be reconciled by noting that the average flaring
amplitude (A) defined in Eq.4, is ≈ 10−3 in this study, while Upendran & Tripathi (2021a) find
A ≈ 10−2 in EUV. This shows that an approximately 10× reduction in the flare amplitude has
resulted in an approximately 10× increase in flaring frequency (pf ). This is consistent with the
finding of Upendran & Tripathi (2021a) that pf is found to reduce with increasing event amplitude.
Thus, results for flaring frequency (pf ) obtained here for X-ray observations is consistent with their
EUV counterparts shown in Upendran & Tripathi (2021a), and strongly indicate the presence of an
energy reservoir that may be depleted by large events occurring infrequently, or small events occurring
more frequently. This flaring frequency translates to ≈ 300 events in a full-disk quiet coronal image
in the 1-2.3 keV energy range, if an integration over ≈ 11 minutes is performed. However, note that
we have selected extremely quiet times in this analysis, where there are no visible flares. Thus, the
whole solar corona need not be at temperatures emitting strongly in the 1-2.3 keV energy range of X-
rays. Furthermore, these events would have a typical amplitude of 10−13–10−11 W m−2. This implies
that even for regions emitting most strongly in X-rays in these quiet times, the events may not be
detectable discretely upon incorporation of noise and statistical uncertainties. Thus, we expect only
as a diffuse background to be seen with current instrumentation.

We further find that the event timescale ranges from ≈ 6−11 minutes. Based on EUV observations
from AIA, Upendran & Tripathi (2021a) showed that the event time scales reduce with increasing
temperature, i.e., from ≈ 16 minutes in 171 Å (log T ≈ 5.85) to ≈ 12 minutes in 211 Å (log T ≈ 6.2).
Since the observations reported here are at higher temperature, the obtained results are consistent
with those from EUV. However, note that these are only the mean values of a distribution of time
scales as inferred by Upendran & Tripathi (2021a).

We may also compare the properties of these unresolved events with those of resolved mi-
croflares.Sylwester et al. (2019), for exmaple, studied microflares in the 1.2–15 keV energy range
using data from SphinX (Sylwester et al. 2008), with similar events studied by Vadawale et al.
(2021a). They find the median temperatures of log T ≈ 6.3, while the time scales range from ≤ 1
minute to ≈ 10 minutes. Thus, the timescales we obtain are typically of the order of, or even slightly
longer than those obtained by Sylwester et al. (2019) – though we emphasize that timescales are
consistent within the uncertainties.

Finally, we obtain α between 2.0 and 1.56 in this study, which are far flatter than those obtained
by Upendran & Tripathi (2021a), who find α ≥ 2. However, note that the median α in Upendran
& Tripathi (2021a) varies from 2.26 in 171 Å to 2.07 in the 211 Å passband. Consistent with this
trend, we also find the α from X-rays to be smaller. Moreover, from Table. 1, we see that the α value
reduces with increasing energy (from 1–1.3 keV to 1.3–2.3 keV). However, we note that the increase
is only in the mean value, but within the errorbars they are consistent. On the whole, there appears
to be a particular flattening of α with the increasing temperature of plasma. Thus, our results are
consistent with those of Upendran & Tripathi (2021a) based on AIA observations.

We emphasize, however, that the smaller α for higher temperatures is intriguing, i.e., for a given
range of amplitudes, a larger α would have infrequent outlier intensities. However, a smaller α, as
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inferred here, implies that these outlier events start to become the norm, implying that the typical
amplitude of events is nearly constant. Moreover, Vadawale et al. (2021b) find the power law slope
to agree with 2 for the microflare observations using the same instrument and for the same time
periods. This raises the question of a possible change of the underlying mechanism of heating from
higher energies to lower energies, which reflects as differences in the power law exponent.

We note that the obtained energy of the impulsive events are typically in the nanoflare/picoflare
regime and vary in the range of 1021–2× 1023 ergs. These values are typically of the scale of thermal
energy as measured by Sylwester et al. (2010) for typical solar quiet times, though we note that we
report only a conversion of luminosity to energy, and not the thermal energy itself. Considering a
very small range of energies the actual value of α may not even have a strong meaning. It may simply
suggest that the events of ≈ 1023 ergs are dominant over events with energy ≈ 1021 ergs. Therefore,
it is imperative to not consider just the parameter α, but also consider the radiative flux in the events
to get a better estimate.

Due to the flux-calibrated data of XSM, we can estimate the radiative energy loss from the quiet
corona. We find the flux to be ≈ 103 erg cm−2 s−1 for the full energy range of 1–2.3 keV. This flux
is two orders of magnitude lower than the radiative loss estimates in the quiet corona by Withbroe
& Noyes (1977). Prima-facie, it suggests that such sub-pixel impulsive events may not have enough
energy to maintain the quiet corona. However, we must note that the energy estimate presented here
only provides a lower bound, since the energy is radiated away in many wavelengths. A better way
would be to estimate the “thermal energy” content of the impulsive events, which is not possible in
our case due to lack of spatial content, i.e., a length measure along the line of sight.

A caveat exists in the estimation of only the radiative energy in the given passbands of XSM.
Similar to Upendran & Tripathi (2021a), it is possible that some events may generate a response only
in particular energy bands. Hence, the energetics of these events must be estimated by considering
multiple energy bands in tandem while also introducing spectroscopic filling factors. This is a possible
trajectory for the improvement of the PSM in the future.

We acknowledge the use of data from the Solar X-ray Monitor (XSM) on board the Chandrayaan-2
mission of the Indian Space Research Organisation (ISRO), archived at the Indian Space Science Data
Centre (ISSDC). XSM was developed by Physical Research Laboratory (PRL) with support from
various ISRO centers. The authors thank Aveek Sarkar (PRL) for various discussions. The authors
also thank the anonymous referee for providing numerous constructive comments and suggestions.
This research is partly supported by the Max-Planck Partner Group on the Coupling and Dynamics
of the Solar Atmosphere of MPS at IUCAA.

Software: Numpy (Harris et al. 2020; Van Der Walt et al. 2011; Oliphant 2006), Scipy (Virtanen et al.
2020), Matplotlib (Hunter 2007), Multiprocessing (McKerns et al. 2012), Tensorflow (Abadi et al. 2016),
Cython(Behnel etal. 2011),Jupyter (Kluyveretal. 2016).

6. APPENDIX

6.1. Light curve comparison for other energy bands

In this section, we present the light curve comparison for all the energy bands. The presentation
follows same convention as Fig. 4. These are presented as Fig. 5 and Fig. 6.
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Figure 5. Same as Fig. 4, but for 1.3–2.3 keV band.

6.2. Distribution of events and their energetics

In Fig. 7, we compare the distribution of the events from this work with those measured by Vadawale
et al. (2021b), while in Table. 2, we report the radiative losses in all the energy bands for both the
years. The errorbars are obtained by propagating the Monte Carlo uncertainties in the inverted
parameters across the different equations.
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Figure 6. Same as Fig. 4, but for 1.3–2.3 keV band for the segment from year 2020.

Since we have an exact functional form for the event distribution, we sample 10 points between
ymin and ymax, and plot our results for the 1–2.3 keV passband in Fig. 7. The pink color shows the
data for 2019 and cyan color is for 2020, while the black color corresponds to the data by Vadawale
et al. (2021b). The over-plotted dot-dashed back line represents a power law with α = 2.0.
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